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Abstract
The real noise reduction benefits which may be obtained through the use of one gear tooth form as compared to another is

an important design parameter for any geared system, especially for helicopters in which both weight and reliability are
very important factors. This paper describes the design and testing of nine sets of gears which are as identical as possible
except for their basic tooth geometry. Noise measurements were made at various combinations of load and speed for each
gear set so that direct comparisons could be made. The resultant data was analyzed so that valid conclusions could be drawn

and interpreted for design use.

INTRODUCTION

The problem of gear noise in helioopter transmissions
is ever present. The main exciting forces which
produce this noise are the meshing forces of the gear
teeth in the transmission. While this is certainly an
oversimplification, since many factors influence
transmission noise aside from the gear mesh forces,
the simple fact remains that if the basic exciting
forces are reduced and no amplifying factors are
present, the overall noise level of the system will be
reduced.

Among the several ways in which the gear tooth
meshing forces may be reduced, two of the most
directly applicable to helicopter transmissions are the
form of the teeth and the overall contact ratio. Both

approaches are quite attractive for an aerospace
application since, unlike other "treatment" methods,

which are applied with penalties to either system
weight or performaoce, these approaches have the
potential for reducing noise without causing any
increase in overall system weight or reducing
performance. In fact, both approaches also offer the
possibility of .actually providing improved gear
performance in terms of longer life, higher load
capacity, improved reliability, and reduced weight
while simultaneously reducing noiselevels.

The objective of this program was to define, by
controlled testing and actual noise measurements, the
effect of changes in the profile, face, and

modified contact ratios and the gear tooth form,
separately and in combination, for spur and helical
gears, on the noise levels produced by otherwise
identical spur and helical gears. In order to

accomplish this objective, a program was defined to
design appropriate gears (Table I), fabricate a
sufficient number of test specimens, and conduct the

testing required.

While a wide range of specimens is shown, they were
all configured as nearly alike as practical, within the
limitations imposed by manufacturing considerations
and the test stand. Testing was conducted in a single
mesh gear box under controlled conditions which
were maintained as nearly: identical as possible.
Acoustic intensity memmrements were taken with the
aid of a robot to insure repeatability of measurement

between gear sets and to minimize human technique
influence.

TEST GEAR DESIGN

Eight (8) sets of gears, four (4) spur and four (4)
helical as li_d in Table I, compatible with the
NASA/._wis gear noise test rig, were designed. Of
the four sets of spur gears, two sets have an involute
tooth form and two utilize a noninvolute, constant

radius of curvature tooth form. All gears were
designed in accordance with normal Boeing
Helicopters practice so that, except for size, they are
representative of typical helicopter gears.



Table I Gear Noise Test Matrix

Confi_axration

1. Conventional

Spur Baseline

2. HCR-INV

3. Conventional

Single Helical Baseline

4. Double Helical

5. HCR-INV

6. HCR-INV

7. NIF Baseline

8. NIF-HCR

Tooth Form T__
Contact Ratios

Spur

Profile Face Modified

Involute Spur 1.25 0.00 1.25

Involute Spur 2.15 0.00 2.15

Involute Helical 1.25 1.25 1.77

Involute Helical 1.25 1.25 1.77

Involute Helical 1.25 1.75 2.15

Involute Helical 2.15 2.25 3.11

NonInvolute Spur 1.25 0.0 1.25

NonInvolute 2.15 0.0 2.15
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Figure 1 - Test Gears
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Table il - Basic Test Gear Configuration

Pinion Gear

Number of Teeth 25 31

Diametral Pitch, Transverse 8.

Center Distance 3.50

Pressure Angle, Transverse 25 (Std Profile Contact Ratio)

20 (High Profile Contact Ratio)

Face Width (Spur & Single Helical) 1.25

Face Width (Double Helicals) Double Helicals 0.625 ea Helix

Since these gears were tested in the NASA test rig, it

was also necessary to maintain compatibility with the

test rig. The standard NASA test gears incorporated

a loose fit between the gear bore and the shaft outside
diameter. In order to be sure that the noise test

results, especially for the helical gears, were not

affected by this loose fit, it was changed to a press fit

which would be more typical of that used in a

helicopter application. While this change caused some
difficulty in changing from one configuration to

another, it was important from a test validity point of

view. Previous 1NASA testing of Boeing Helicopters

designed small gears using the high profile contact

ratio noninvolute tooth form (HCR-NIF) indicated that

their surface load capacity was substantially higher

than that of conventional involute gears and that their

bending load capacity (at torque loads) was at least

equal to and actually slightly greater than the standard

involute gears. The scoring resistance of the HCR-

NIF gears, in the NASA tests, appeared to be lower

than that of equivalent standard gears. The lower

scoring load capacity performance may have been due

to inadequate profile modification on the small test
gears therefore the HCR-NIF gears for this testing

incorporated improved profile modifications.

The test gear configurations were selected to be

representative ofthose which are either actually in use

or have near term potential of being used in helicopter

transmissions. While lower noise levels are generally

associated with helical gears as compared to spurs,

there was no defmitive data, for accurate, ground

tooth gears, which defines the noise advantage which

may be obtained. Similarly, anecdotal information

indicates that higher contact ratios, both face and

profile, also tend to reduce noise levels but, again,

hard data was not readily available.

While helical gears provide some noise reduction,

their use also generates a thrust load which must be

dealt with in the design of the overall system,

especially the support bearings, gear blank design, and

housing structure. Double helical gears provide some

relief from the net thrust problems, however, the
thrust loads from each helix must still be cancelled

within the gear blank and the overall effect of this on

the noise level of the gear has not been studied at all.

New tooth forms of various noninvolute types have

been investigated for possible use in helicopter
transmissions in recent years but these investigations

have centered almost universally on the load capacity



aspectof the forms and not their noise behavior. One

of these has demonstrated some potential for

improved load capacity in previous testing.

Considering all of these factors, the range of gear

configurations defined in Table I and shown in Figure

1 was selected to provide some basic answers to their

respective noise behaviors. The basic gear tooth data

for the test gears is provided in Table II.

TEST FACILITY

The NASA Lewis Research Center gear noise rig,

Figure 2, was used for these tests. This rig features a

single-mesh gearbox powered by a 150 kW (200 hp)

variable speed electric motor. A poly-V belt drive was

used as a speed increaser between the motor and input

shaft. An eddy-current dynamometer loads the output

shaft at speeds up to 6000 rpm. The rig was built to

carry out fundamental studies of gear noise and the

dynamic behavior of gear systems. It is designed to

allow testing of various configurations of gears,

bearings, dampers and supports.

To reduce unwanted reflection of noise, acoustical

absorbing foam baffles cover test cell walls, floor,
and other surfaces. The material attenuates reflected

sound by 40 dB for frequencies of 500 I-Iz and above.

GEAR NOISE RIG

Figure 2 - Nasa Gear Test Rig

A 20 node measurement grid was drawn on the top

cover of the gear box and used to insure repeatability

of the noise measurements and to aid in avoiding

operator induced errors. The grid covers an area 228

x 304 mm (9 x 12 in) centered on the 286 x 362 mm

(11.25 x 14.25 in) top. A cutaway section of the test

gear box is shown in Figure 3. All data was collected

using the computer conlrolled robot arm coordinated

with the reference grid so i_aat no matter what gear set

was running, the readings were identically taken.

INSTRUMENTATION

An experimental modal test was performed to
determine the modes of vibration and natural

frequencies of the gearbox top. An 800 line, 2-

channel dynamic signal analyzer collected frequency-
domain data. Commercial modal sot_ware running on

a personal computer was used for the analysis. The
tests were performed with the gearbox heated to

operating temperature. The structure was excited

sequentially at each of the 63 nodes using a load cell

equipped modal hammer to measure excitation forces.

The response was measured with a small piezoelectric
aceelerometer mounted at a reference location near

the center of the gearbox top.

The gear box modal test was not accomplished as part

of this program. The modal testing was performed as

part of a previous program 2. Modal test results were

used to assure that gear mesh frequencies did not

coincide with important modes of the gear box.

NOISE MEASUREMENTS

Acoustic intensity measurements were performed,

under stable, steady-state operating conditions, with

the aid of a computer-controlled robot designated

RAIMS 3'4, (l_obotic Acoustic Intensity Measurement

System). The RAIMS software commanded the robot,

Figure 4, to move an intensity probe over a prescribed

measurement grid; recorded acoustic intensity spectra

in the analyzer for each node of the grid; and

transmitted the spectra to the computer for storage on
disk.

The acoustic intensity probe consists of a pair of

phase-matched 6 mm microphones mounted face-to-
face with a 6 mm spacer. The probe has a frequency

range (±1 dB) of 300-10,000 I-Iz. Measurements were
made at a distance of 60 mm between the aconstie

center of the microphones and the gearbox top.

The 20 intensity spectra collected at each operating

condition were averaged, then multiplied by the

radiation area to compute an 800 line sound power

spectrum. The radiation area was assumed to be the

area of the grid plus one additional row and colunm
of elements or 0.0910 m 2. The actual area of the top

is 0.1034 m 2. The measurement grid did not extend
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completelyto theedgesofthegearboxtop because

the edge of the top was bolted to a stiff mounting

flange which would not allow much movement and

measurements taken close to the edge of the top

would be affected by noise radiated from the sides of

the box. Noise measurements from the gearbox sides

were not attempted for the following reasons:

(1) the top is not as stiff as the sides; thus, noise

radiation from the top dominates

(2) the number of measurement locations were kept
reasonable; and

(3) shafting and other projections made such
measurements difficult.

Sound power measurements were made over a matrix

of nine test conditions: 3 speeds (3000, 4000, 5000

rpm) and at 3 torque levels (60, 80 and 100 percent

of the reference torque 256 N-m (2269 in-lb)). During

each intensity scan, the speed was held to within ±5

rpm and torque to ±2 N-m. At least five complete sets

of scans were performed on each gear set.

Acoustic intensity data were recorded over the

bandwidth 896-7296 I-Iz. On the 800 line analyzer,

this produced a line spacing of 8 Hz. We chose this

frequency range because it includes the first three

harmonies of gear meshing frequency for the speed

range (3000-5000 rpm). In addition to the intensity

data, signals from two microphones and two

accelerometers were recorded on four-channel tape.

i I

Figure 3 - Test Gear Box Cutaway Section

Figure 4 - Robot Noise Measurement System

PROCESSING SOUND POWER DATA

The sound power data as captured by the method

outlined above consists of many data files of 800 line

sound power spectra. A typical spectrum is shown in

Figure 5. This trace (taken at 5000 rpm and 100

percent torque) includes the first three harmonies of

gear mesh frequency. Each harmonic is surrounded by
a number of sidebands.

Bo:_el,nr: Spur" Geoe'_. No 418

I 2 3 4 5 fi

FPBq+Jenm_d . kHz

Figure 5 - Baseline Spur Spectrum

To characterize gear noise data, it was decided to

reduce the 800 line sound power spectra to a single

number that would represent each gear mesh

harmonic. For the subject report, this is referred to as

the harmonic sound power level. Five alternatives

were considered for reporting of each harmonic level:



CI)The amplitude at gear mesh frequency only (no
sidebands)

(2) The value of the largest amplitude mesh frequency
harmonic or sideband, whichever is highest

(3) The log sum of the sound intensity amplitudes in
a fixed-width frequency band centered on the mesh
frequency.

(4) A value similar to (3) except the size of the
frequency band varied with speed. The total number
of values added is not constant.

(5) Sum of gear mesh and fixed number of sidebands.

lag ] Bo_e I *he c:pu,," .Georo No 4/8

/

_ i " q , i i ,

15 16 17 19 19 2 21 2.2 Z3 24 2$

Figure 6 - Enlargement of Figure 5
(Around First Harmonic)

Alternative (5) was chosen for computing the
harmonic sound power level. We used three pairs of
sidebands plus the harmonics (i.e., seven peaks) in the
calculation. Sound power levels were converted to

Watts prior to calculating sums.

In the analysis of the intensity data, each harmonic of
gear mesh frequency was defined by several digital
lines of the frequency analyzer. In order to capture
the total effective magnitude at each harmonic, while
accounting for speed drift, etc, the peak value and two
frequency lines on either side of the peak were
summed. These values were converted to dB (re 10"12

W) to define a mesh harmonic level. Since seven
peaks were used, 35 values (5x7) were summed to
produce the mesh harmonic sound power level. Figure
6 illustrates the data (marked with the symbol "*")
used to produce the harmonicsound power level. This
is a portion of the spectrum of Figure 5 showing the
first harmonic (at 2083 Hz). The sideband spacing
(for 5000 rpm) is 83 Hz, thus there are about 10
analyzer lines per sideband. At lower speeds, there

are fewer analyzer lines per sideband.

DATA SAMPLING

In order to be assured that data measured on each

gear set could be reliably compared with data from
other gears, it was desired to have sufficient records
to establish a 95% confidence level of ±1 dB. This

level is well beyond the practical difference (i.e., a
change of about 3 dB) which most persons with
normal hearing can detect.

Based on these considerations, the confidence limit

is given by Equation 1:

c =c (6Iv" ) (i)

where:

C_ = confidence limit, dB

= probability distribution ("Student
t" distribution)

5 = standarddeviationofdata,dB

n = number of samples (typically 5)

The values for the "t" distribution are found in any
standard statistics text. A confidence level of 95

percent corresponds to a 5% probability. The number
of degrees of freedom in the "t"distribution is the
number of samples minus 1 (typically 4).

To estimate the effect due to sample-to-sample
variation, two sets of gears for each design were
fabricated and tested. Each gear was inspected in
detail in accordance with typical production helicopter
standards. The overall accuracy of the gears was
found to be consistent with what we expect of

production helicopter gears of similar size and
configuration. Based on our evaluation of the gear
tooth inspection data, the variation between the two
sets of gears is reasonably typical of normal
production for gears in the same manufacturing lot.
Lot to lot variations may be and differences between
different manufacturers of the same parts certainly

will be higher but the overall trend of the effect
should be about the same.

6



Wehave also noted that a large difference in noise
level is sometimes observed on large production gear

boxes simply as a result of rebuilding them after they
were disassembled for a visual inspection, even

though no parts were changed. Considering this effect,
in addition to the manufacturing variability checks, we
also checked for variability due to disassembly and
reassembly.

We accomplished this by testing three "builds" of the
first gear set. Each build used exactly the same parts
and each was accomplished by the same technician
using the same tools, and miscellaneous parts.

TEST GEAR LOADING

The loads applied to the test gears during this
program presented a problem in the design of the
experiment. Obviously, if the overall gear geometry is
kept constant, the stress levels under identical torque

30.000

25.000

A

20.000

==

15.000

10.000

5.000

BASELINE

SPUR ..

HCR"

1.000 1,500 2.000 2.500

TORQUE (INCH-LBS)

Figure 7 - Bending Stress v Torque

loading conditions will be different. An alternative to
the identical torque loading method would be to apply
varying torques to each eonfignration in order to keep
the tooth stresses the same. While this seems

reasonable, the question of which stress (not to
mention Flash Temperature) should be held constant.

After much deliberation, the authors decided to use
identical torque and speed conditions across the range
of gear configurations. Since the overall geometry of
the gear blanks was held constant, we believe that this
approach is more representative of the actual noise
which may result from a given weight or size of gear.

Better load capacity, due to lower stresses, is another
factor but will be ignored for our purposes.

200.000

160,000

A

80.000

40,01_)

BASELINE

SPUR

/
J

HeR ..i':

HELICAl.

, J I I , , I , , ,

1.000 1.500 2.000 2..500

TORQUE (INQ-14.BS)

Figure 8 - Contact Stress v Torque

In order to provide an overview of the stress levels to
which these gears were subjected during testing,
Figures 7, 8, & 9 show the bending stress, contact
stress, and flash temperature levels as functions of
torque and speed. Note that, on Figure 9, the 5,000
RPM line for the baseline spur gear set (configuration
1) and the 4,000 RPM line for the HCR helical gear
set (configuration 6) are virtually coincident.

500 .

r

,°I,,400

sPuR ;_, _-_ _.,..,.g'-_ .... _......
21X) .I .,.,_._ _7;* *" o...*'¢"

100 ' , 1 , , ,

1,000 1.500 2.O0O

(INCHJ..BS)

5000 RPM

400O

3.'_00RpM

2.5O0

Figure 9 - Flash Temperature v Torque

The stress levels at whieli these gears were run during
this testing are reasonably representative of those at
which 10 pitch accessory gears would be run at in a
typical Boeing Helicopters transmission. Main power



gears would, however, be run at considerably higher

stress levels. Typically, for example, the bending

stresses in a helicopter application would be about

double the maximum stress run during this testing.
Both the contact stress levels and the flash

temperatures experienced in a typical helicopter main

power transmission would be similarly higher than the
test conditions defined herein.

While it would have been desirable to run the test

gears at higher stress levels (more consistent with the

profile modifications applied), limitations inherent in

the NASA test rig loading mechanism prevented this

from occurring. Still, since all results are comparative,

the data obtained is quite meaningful and will provide

much insight into the problem. Caution should be

exercised, however, when applying these results to

any practical application. The results are valid in a

comparative but probably not from an absolute sense.

RESULTS

A very large amount of data has been collected during

the conduct of this test program. A rather complex

overview is presented in the bar chart shown in
Figure 10. Note that the configuration numbering

scheme followed in Table I is continued in Figure 10

(and in other similar Figures presented herein) for

easy reference among the configurations tested.

Considering the data shown in Figure 10, we can

observe that all of the helical gears, regardless of their

specific configuration, are generally significantly

quieter than the equivalent spur gears and that high

profile contact ratio spur gears are quieter than their

equivalent standard contact ratio spur counterparts.

One result which was not really anticipated in the fact

that the double helical gear set was noisier than its

single helical counterpart in some cases.

In order to better understand the specific ramifications

of these results in terms of their application to actual

design problems, it is enlightening to look at the data

in terms of subgroups.

Spur Gears - Both involute and noninvolute tooth

form, high profile and standard profile contact ratio

spur gears were tested. Though the noise levels varied

with both speed and torque loading, as Figure 11

shows, in general, the HCR spur gears (configurations

2 & 8) were quieter than the standard contact ratio

spur gears (configurations 1 & 7) regardless of the
tooth form. Similarly, the involute tooth form spur

gears (configurations 1 & 2) were quieter than the

noninvolute tooth form gears (configurations 7 & 8),

regardless of contact ratio.

An exception to this general observation occurs at the

4,000 RPM speed condition and even that exception

is not completely consistent across the three torque

conditions tested. At the low and medium torque

conditions (i.e., 1,361 & 1,816 In-Lbs), the HCR

gears were actually slightly noisier than the standard

contact ratio gears. This reversal of the trend is

probably related to an overall response of the gear,

bearing, shaft, & housing system rather than a direct

result of the gear configuration. As will be obvious

from the ensuing disenssion, similar effects were also

observed for other gear configurations, probably

related to the same, as yet unidentified, cause.

Helical Gear_ - As was the ease for the spur gears,

increasing contact ratio, both face and profile,

correlate with decreasing noise levels on the helical

gears. AS Figure 12 shows, increasing the face contact

ratio from about 1.25 (configuration 3, modified

contact ratio 1.77) to 1.75 (configuration 5, modified

contact ratio 2.15) decreases the noise level

substantially in every case, though the results at

higher speeds are more dramatic than at lower speeds.

Combining high face and profile contact ratios

(configuration 6, profile, face & modified contact

ratios of 2.15, 2.25, & 3.11, respectively) further

increases the noise reduction which may be obtained.

Indeed, in general, regardless of the configuration

considered, the high profile and high face contact

ratio, configuration 6, was consistently the lowest

noise generator.

Helical gears used in helicopters tend to have

relatively low face contact ratios (helix angles are

kept low to minimize thrust loading and the extra

weight associated with reacting the thrust) thus this

result is especially interesting since it suggests that it

is probably possible to trade off helix angle against

increasing profile contact ratio to effect an

improvement in noise level without the weight penalty

which would be associated with accomplishing the

same reduction with helix angle alone.

One surprising result was that for the double helical

gear set, configuration 4. This gear set is virtually

identical to the single helical gear set, configuration

3, except that it uses two identical gears of opposite

hand (i.e., each hand has the same helix angle, face

width, and tooth proportions as the single helical

configuration 3 gears).
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Figure 10 - Summary Of Test Results

At every operating condition, the double helical gears

were either almost as noisy as or noisier than either

the baseline low face and low profile contact ratio

gear set (configuration 3) orthe high modified contact

ratio helical set, configuration 5. Initially, one would

expect that the double helical gears would be about as

quiet as their single helical counterparts, however this

is clearly not the case.

The double helical phenomena appears to be related

to the axial shuttling which occurs as the double

helical gear set moves axially to balance out the net

thrust loading. The shuttling is due to the presence of

small mismatches in the relative positions of the teeth

on each helix. No matter how accurate the gear is,

some mismatch will always be present thus this is an

unavoidable phenomena.

While this feature of a double helical gear is a

valuable design option since it greatly simplifies the

bearing system, it is obvious that a price is paid in

terms of noise (and certainly vibration) as the gear set
shuttles back and forth.

9
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Figure 11 - Spur Gear Noise Levels

Figure 12 also shows data for a "Spread Single

Helical" gear set which is not listed in Table I. This

configuration was not one of the eight planned test

variants. During the manufacture of the test gears, the

initial double helical gear drawings went out with an

inadvertent drafting error such that both helices were

manufactured with the same hand. The resultant gear

set (shown in the upper fight corner of Figure 1) was
somewhat unusual, and probably would not be used

in a production environment, however, we decided to

test it anyway.
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Figure 12 - Helical Gear Noise Levels

The noise results from this rather unusual gear set

(which one of the author's unceremoniously dubbed

the "OOPS" gear set), were surprising. It was actually

quieter across the board than the double helical gear

set under almost every operating condition. At first,

these results were puzzling, however, after careful

evaluation of the circumstances, the explanation
became clear.

Since the per helix face contact ratio, face width,

profile contact ratio, etc. is identical for both the

OOPS and the double helical gear sets, the only

operational difference is the lack of axial shuttling.
The double helical set will be in a constant

equilibrium seeking state because of the theoretically
zero net thrust load while the OOPS gear set will run

in a fixed axial position due to the net positive thrust

load. This test thus provides some insight into the

magnitude of the noise penalty which is paid when

double rather than equivalent single helical gears are

used. Since these test gears are all very accurate

(accuracy typical of helicopter gears), it should be
obvious that a larger penalty would be paid if gears of

lesser quality were to be used because the lower the

gear quality is the more shuttling would be likely to
Occur.

BaselineSpurGears
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Figure 13 - Spur Gear Build Variations

If one considers the OOPS gear set to be a single

helical gear set, then its effective face contact ratio

would also place it between the baseline helical gear

set (configuration 3) and the high face contact ratio

helical gear (configuration 6). This being the case, its

noise level is approximately where one would expect

based on the levels of gears with higher and lower
face contact ratios.

Build Variations- During other testing, the authors

have noted significant variations in the measured (and

perceived) noise level of the same gear system before
and after disassembly. In some eases, this variation

was of considerable magnitude. To investigate this

phenomena, each of the gears types was assembled,

tested, disassembled, and then tested again. In one

case, for the baseline spur gears (configuration 1, this

process was repeated three limes. Similar variations in

noise levels were recorded for all gear sets. Figure 13
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showsthespecificresultsforthebaselinespurgears
(S/N2& 6).Thelargestminimumtomaximumbuild
variationisabout8dB(occurringatthehighestspeed
condition)whiletheminimumbuildvariationis1dB
(occurringatthemediumspeedcondition).Exceptfor
thelowtorque,highestspeedcondition,theaverage
buildvariationisabout3dB.Whilenorealpatternis
apparent,it doesappearthatthevariationdecreases
slightlywithincreasingload.

Figure13alsoshowstheresultsobtained from a
second "identical" set of spur gears, S/N 4 & 8. It
should be obvious that the variation between

otherwise identical S/N of the same part generally

exceeds the variation from rebuilding the same parts.

Perhaps this is not surprising, however it does point
out the need to establish noise test results over a

broad range of repeated testing to insure that the

differences observed are not simply due to part to part
variation.

This latter effect can also be seen from Figure 14
which shows the results for two "identical" sets of the

baseline helical gears. The variation observed is

generally less than that observed for the spur gears

but not markedly so.
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Figure 14 - Helical Gear Build Variations

It is important to again emphasize several important

points about this data. Such variations, both between

different builds of the same parts and among different

S/N of the same part, are not at all unusual, rather

they are quite common. The build variations occurred

when the same physical components were simply

disassembled and then reassembled under very

controlled conditions and by a skilled technician. The

S/N to S/N variation occurred for helicopter quality

parts in which the apparent variations in the normally

accepted measures of gear quality (e.g., lead, profile,

spacing, etc.) are extremely small, probably at a level

where further improvements would be extremely

costly.

This points out one difficulty in defining a noise
reduction effort in that the variations due to these

effects are often of the same order of magnitudes the

changes which may be attributed to gear configuration
or treatment. Such differences must at least exceed

the variations due to the build effect and those

observed among different S/N of the same P/N before

they can be considered significant of themselves.

Torque EffeCt - The effect of torque on the noise

level of a gear set depends on many factors. In

general, however as torque increases, the noise level

would be expected to increase if no other factors are
at work. As described below, however, this is not the

case.

This effect of torque level on gear noise will be

severely impacted by the amount of profile, and in

some cases lead, modification which has been applied

to the gears. In the testing described herein, the

profile modifications were largelythe same from gear

set to gear set so that we were comparing differences

between gears and not between modifications. No
lead modifications were made to any of the test gears.

In addition, the profile modifications which were

applied were calculated for the a torque substantially

above the upper end of the torque range under which

these gears were actually run -- that is all of the

gears were overmodified for the actual torque
conditions encountered. It is to be expected then that

as the load increases, more of the profile will come

into contact as the teeth bend thus perhaps lowering

the noise level. Conversely, since our maximum test

torque was only about twice our minimum test torque
and the absolute load levels were not extremely high,

it is also likely that the tooth deflections under load
were small as well. If the latter effect dominates, then

the noise level would tend to increase with torque.

As Figure 15 shows (for the lowest and highest

speeds only), the effect of torque on the noise level of

the gears tested in this program is mixed. For the

baseline spur gears (shown on Figure 15 as 0° helix

angle), the noise level appears to remain about

constant with torque. The helical gears, however,

exhibit a slightly more varied behavior. At the low

speed condition (3,000 RIM), the noise level

11



increasesasthetorqueincreaseswhileat thehigh
speedcondition(5,000RPM)theopposite appears to
be true. In both cases, the overall effects are not

generally dramatic.
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Figure 15 - Torque Effect On Gear Noise

Speed Effect - For all gears tested, increasing speed

increased the noise level. Figure 16 shows the general

trend for the helical gears and the baseline spurs. It is

interesting to note that the increase in noise level

occurs at an increasing rate as the speed increases.

RPM& TorqueEffect
_100,

°i
60 , , , I , , I , , , i , ,

2.000 3.000 4,000 5,000 6,000
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-_- --9- -3- -_

0 deg @ 1361 in-I_ 21.5 _ @ 1361 irl-Ils _.9_ @ 1361 in-!bs 35.3 deg _ 1351 in-l_

Figure 16 - Combined Speed & Torque Effects

That is the difference in noise level going from 4,000

RPM to 5,000 RPM is generally more than twice that
which occurs from 3,000 RPM to 4,000 RPM. This,

of course suggests a nonlinear effect of what ever

tooth errors are present: Before drawing this firm

conclusion, however, other possibilities must be

considered. For example, the test gear box has

exhibited a response of its own at about 5,000 RIM

thus the increase in noise level at this speed may be

attributable (at least in part) to the housing response

as well as the gears themselves.

Face Cont_gt R_tio Eff¢ct- While noise variations

which can be attributed to speed and load are

certainly of interest, these factors are seldom gear

design parameters over which the design engineer has

substantial control. Contact ratio, which is a function

of the basic tooth design, on the other hand, is a well

defined parameter over which the gear design

engineer has a great deal of control, once the

prerequisite stress requirements are met, of course.

1361 (in-lb) Torque
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80
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60
0 3

, 1 , I

1 2

Face C_ntact Ralio

@ 3000 rpm @ 4000 rpm @ 5000 rpm

--E-- -e--

Figure 17 - Face Contact Ratio Effect

Low Torque

Essentially four different helix angles were tested O,

21.5, 28.9, & 35.3 degrees). These configurations

produced gears with face contact ratios ranging from

0.0 to 2.25 and modified contact ratios ranging from
1.25 to 3.11. In all eases tested, as the contact ratio

increased, the noise level decreased. As Figures 17

and 18 show, the noise reduction appears to be almost

a linear function of the face contact ratio, regardless

of the applied loading. Similar effects can be seen if

the noise level is plotted as a function of either

modified, Figure 19, or total, Figure 20, contact

ratios. These latter Figures do not show quite the

linearity that Figures 17 and 18 do, however.
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Of all of the effects investigated, it appears that the
contact ratio is the most significant, if all other effects
are held reasonably constant. This is important in a

design for minimum noise situation since the contact
ratio is one of the parameters which the gear designer
can control without drastically effecting the overall
configuration of the gear system. That is, by
judiciously selecting the tooth proportions, helix

angle, and face width, it is often possible to optimize
the contact ratio to yield a minimum noise design.
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Figure 20 - Total Contact Ratio Effect

higher noise levels at virtually all speed and load
conditions tested than the equivalent involute
(configurations 1 & 2, respectively). The differences,
as Figure 21 shows, in some eases were about the
same order of magnitude as that due to the build
effect described earlier. This being the ease, it is hard
to ascribe a specific figure to the difference in noise
level other than to note the trend.
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Figure 19 - Modified Contact Ratio Effect

Tooth Form - In general, the noninvolute tooth form,

whether standard (configuration 7) or high profile
contact ratio (configuration 8), resulted in slightly

90
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Figure 21 - Tooth Form Effect
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Whilethe differencebetweenstandardandhigh
profilecontactratiospurgearsisnotreallyatooth
formvariationin thestrictestsenseoftheconcept,it
is oftenreferredto assuch.Basedon thetesting
conductedherein,thehighprofilecontactratiogear
sets(configurations2 & 8)resultedin lowernoise
levelsthantheirstandardcontactratiocounterparts
(configurations1& 7,respectively).Thiseffectwas
especiallypronouncedatthelowerspeedendofthe
testrangeandthereweresomeexceptions,especially
atthe4,000RPMcondition.Still,sincehighprofile
contactratiodoesnotcauseanyadditionalloadingon
thesystem(aswoulda helicalgear),it isa viable,
andpossiblypreferableoptioninmanycases.
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Figure 22 - 3,000 RIM Noise Summary

CONCLUSIONS

The results of this program, summarized in the
difference bar charts shown in Figures 22, 23, & 24,
have provided significant insight into the effects of
various tooth design parameters on the noise level of
a geared system. While a wide range of specific
conclusions can be drawn from the data, perhaps the
most significant are:

1. The contact ratio (whatever the measure) is the
most significant factor within the gear design
engineer's control with respect to noise reduction.

2. The noninvolute tooth form did not offer any
substantial improvement in noise level.

4000 RPM Relative To Spur Baseline
'_ 10

-J

0
o

o= (5)
CO

'=-=(10)

oE(15)
C)

Increase
5

'i

t

(20) 1361 1861 2269

Torque (in*lb)
I HCR Spur r_lBa.seHelica121.5 deg I_ Ooulde Hekld • Hellc_ 28.9 deg

r't Hercal 3S3 deg B N_C Spar • NIF HCR Spur I_S_ _1

Figure 23 - 4,000 RIM Noise Summary

5000 RPM Relative To Baseline Spur
s

" 0
J..

tl (s)
¢.-

0

co(lO)

0

(15)
O

o

-'= (20)
a

Increase

Reduction

1361 1861 2269

Torque (in*lb)

II HCR SI_" I_ Ba_Heicat 2t 5 deg E_ Do_ble Hei_ II He6_ 28.9 deg

g Helica135.3 deg _ NF SW II NIF HCR Spor r_ Spre=l Helal

Figure 24 - 5,000 RPM Noise Summary

3. High profile contact ratio spur gears are quieter
than standard profile contact ratio gears, regardless of
tooth form.

4. Applied loading has a relatively small effect on
noise level if the basic stress levels are low. This is

probably not true for very highly loaded gear teeth,

especially when the effect of profile modification is
considered.

5. Speed has an increasingly detrimental effect on the
noise level of the gears tested.
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